
 Processor storage is composed of central storage and expanded storage. The third category of storage is auxiliary storage.1

 With MVS/ESA SP5.1, the sampling interval is 250 milliseconds. The state of each TCB or SRB associated with an address2

space is sampled every 250 milliseconds, beginning from address space initiation.

 Note that an address space can be in multiple states (for example, a CICS region might be using multiple processors3

concurrently, while some CICS tasks were also waiting on some function). Thus, the sample counts can total more than 100% of
the sample intervals for any address space.

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.1

Rule WLM103: Service Class did not achieve execution velocity goal

Finding: CPExpert has detected that a service class period did not achieve the
execution velocity goal that was specified in the Service Policy in effect. |

Impact: This finding can have a HIGH IMPACT on performance of your computer
system.

Logic flow: This is a basic finding. There are no predecessor rules.

Discussion: Installations may specify an execution velocity goal for a service class
period. An execution velocity is a measure of how fast work should run
when the work is ready to run, without being delayed waiting for access to
a CPU or delayed waiting for access to processor storage . The purpose1

of specifying an execution velocity goal is to allow installations to specify
how important it is to have work processed, when the work has no time-
related measure (that is, a response requirement is not associated with the
work).

The execution velocity is computed based on samples collected at periodic
sampling intervals by the System Resources Manager (SRM). The SRM2

sampling code interrogates address space control blocks (TCBs, SRBs,
OUCBs, and OUXBs) to determine the state of each address space
assigned to a service class. Sampling counts associated with the service
class are updated based upon the state of the address spaces.3

The sampling code records the sampling result into the following categories:

• CPU using samples. CPU using samples mean that the address space
is using the CPU.

|
• I/O using samples. I/O using samples means the number of calculated |

samples of work using non-paging DASD I/O resources (DASD connect |

I/O using samples ' device use time (samples second

I/O using samples ' 5 seconds (4 samples second ' 20 samples

With APAR OW47667 (and included in z/OS V1R3), disconnect time is no longer counted as productive I/O time. |4

Disconnect time also is not counted as I/O delay because there is nothing WLM can do to reduce disconnect time. |

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.2

state or DASD disconnect state). I/O using samples are included only |4

if the installation has elected to include WLM-managed I/O. |
|

For most samples that are taken by the WLM, the WLM can sample |
dispatchable units to see what state they are in (they are using the CPU, |
or they are delayed for specific reasons). At each sampling interval, the |
WLM simply examines the state of the dispatchable unit and adds a count |
of “1" to the appropriate counter reflecting the state of the dispatchable |
unit. |

|
This sampling approach cannot be used with DASD I/O operations, |
because the DASD values are not available to WLM as instantaneous |
"states," a state sampling approach cannot be used. DASD I/O time is |
reported to MVS as counters accumulated by the I/O controllers. |

|
Consequently, the WLM calculates the number of samples of work using |
non-paging DASD I/O resources. The WLM uses the device connect time |
(and device disconnect time if APAR OW47667 is not installed or with |
z/OS V1R3) to yield device using time. The WLM multiplies that time by |
the "WLM sampling rate" of 4 samples per second. |

|
For example, assume a DASD non-paging device using time of 5 seconds |
accumulated in the previous WLM 10-second policy adjustment interval. |
The WLM would add 20 I/O using samples for the 10-second policy |
adjustment interval. |

|
|
|
|
|
|

• CPU delay samples. CPU delay samples mean that the address |
space is ready to use the CPU but is being delayed. Two separate
CPU delays are recorded:

• CPU delay. CPU delay means that a TCB or SRB is waiting to be
dispatched or a TCB is waiting for a local lock. CPExpert refers to this
delay as "DENIED CPU" in various reports resulting from the analysis
of Workload Manager constraints.

• CPU Capping delay. This delay to response time means that the
maximum CPU service units had been consumed for the Resource
Group to which the service class was assigned, and the Workload

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.3

Manager had marked all address spaces associated with the
Resource Group as non-dispatchable for some time-slice intervals.

|
This delay does not necessarily mean that address spaces in the |
capped service class had consumed the CPU service units. The CPU
service units could have been used by another service class if more
than one service class had been assigned to the Resource Group.

• Processor storage delay. Processor storage delay samples means that
an address space is ready to execute, but is delayed waiting for
processor storage. Eight separate processor storage delays are
recorded:

• Swap-in delay. Swap-in delay means that the address space was
delayed on swap-in (the swap-in had started, but had not completed).

• MPL delay. MPL delay means that an address space was ready to
be swapped in, but that the SRM had not initiated a swap-in because
of target MPL constraints.

• Auxiliary page delay from private. This page-in delay means that
the address space experienced a page fault in the private area and
the pages were coming from auxiliary storage.

• Auxiliary page delay from common. This page-in delay means that
the address space experienced a page fault in the Common area and
the pages were coming from auxiliary storage.

• Auxiliary page delay from cross memory. This page-in delay
means that the address space experienced a page fault from cross
memory and the pages were coming from auxiliary storage.

• Auxiliary page delay from VIO. This page-in delay means that the
address space experienced a page fault in VIO and the pages were
coming from auxiliary storage.

• Auxiliary page delay from standard hiperspace. This page-in
delay means that the address space experienced a page fault from
standard hiperspace and the pages were coming from auxiliary
storage.

• Auxiliary page delay from ESO hiperspace. IBM has defined this
state to mean that the address space was experiencing page faults in
ESO hiperspace and the pages were coming from auxiliary storage.
Pages in ESO hiperspace are, by definition, resident only in expanded

 IBM TALKLink RMF FORUM appended at 15:39:18 on 95/05/29 GMT (by YOCOM at KGNVMC) |5

Subject: Workload Activity Report. Used with permission of the author. |
|

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.4

storage (ESO = Expanded Storage Only), and are never migrated to
auxiliary storage. IBM offers the following explanation : |5

"The execution delay for ESO hiperspaces is a calculated value based
on the assumption that if an application does a read for an ESO
hiperspace page and that page is no longer available (has been cast
out), the application will read the data from DASD somewhere.
WLM/SRM takes the number of times a read failed in this way and
multiplies it by the number of delay samples we expect a read of a
page from DASD to represent and report the product as the execution
delay samples for ESO hiperspace. This obviously is not a perfect
solution, but we needed some way to get an estimate of how much
delay is caused to an address space by not having enough expanded
for an ESO hiperspace. Such an estimated is needed to properly
manage the amount of expanded owned by the address space to the
address space's goal." |

|
• Shared page-in delay from auxiliary storage. This page-in delay |

means that the address space experienced page faults from shared |
pages and the pages were coming from auxiliary storage. |

|
• Shared page-in delay from expanded storage. This page-in delay |

means that the address space experienced page faults from shared |
pages and the pages were coming from expanded storage. |

|
• Non-paging DASD I/O operations. With OS/390 Release 3, execution |

velocity can optionally include delays waiting for non-paging DASD I/O |
operations. Non-paging DASD I/O delays include IOS queue delays, |
subchannel pending delays, and control unit queue delays. Note that |
DASD disconnect time is not included in the execution velocity delay |
calculations, but could be included in the “using” component of the |
calculation. See Footnote 1. |

|
• Delays waiting for an initiator. With OS/390 Version 2 Release 4, |

execution velocity can optionally include delays waiting for an initiator |
(with batch jobs in WLM-managed job classes). |

|
Notice that only certain delay categories are included: only delays for |
processor or for processor storage are included in the "delay" category. |
These delays are under control of the SRM. Delays not under control of the
SRM are not included in CPU or processor storage delays, but are included
in an "unknown" delay category. Unknown delay is not included in the
execution velocity computation.

using samples
using samples % delay samples

(100

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.5

For example, delay waiting for ENQ completion is not under control of the |
SRM. Consequently, the Workload Manager does not include waiting for
ENQ completion in when it computes execution velocity. Rather, waiting for |
ENQ completion is included in an "unknown" category when the SRM takes |
its samples. The "unknown" delay means that the SRM was unable to
identify the cause of delay. In practice, this means that the delay was
something over which the SRM had no control (e.g., certain I/O operations, |
ENQ delay, etc.).

The Workload Manager computes the execution velocity of a service class
by applying the following algorithm:

where:

using samples include:

C The number of samples of work using the processor (CPU Using).
|

C The number of calculated samples of work using non-paging DASD I/O resources |
(DASD connect state or DASD disconnect state). I/O using samples are included
only if the installation has elected to include WLM-managed I/O. DASD disconnect |
is not used with APAR OW47667 (and included in z/OS V1R3). |

delay samples include:

C The number of samples of work delayed for the processor (Denied CPU Delay or
CPU Capping delay).

|
C The number of samples of work delayed for processor storage. Delay for processor |

storage includes:

C Paging delay |

C Swap-in delay

C Swapped out for multiprogramming (MPL) reasons |
|

C Server address space creation delay |
|

C Initiation delays for batch jobs in WLM-managed job classes |

 The Workload Manager computes the execution velocity every 10 seconds, during the "policy evaluation" interval.6

 Please see Section 4 for a discussion of how the Performance Index is computed and used.7

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.6

C The number of calculated samples of work delayed for non-paging DASD I/O
resources (DASD IOS queue delay, DASD subchannel pending delay, or DASD
control unit queue delay). I/O delay samples are included only if the installation has
elected to include WLM-managed I/O.

The result from the algorithm is multiplied by 100, to yield an execution
velocity ranging from 0 (when the address space did not use the CPU) to
100 (when the address space was not delayed for any reason controlled by
the SRM).

It is important to keep in mind that execution velocity applies only to times
when an address space is using a CPU or ready to use a CPU (or |
using I/O or ready to use I/O if WLM-managed I/O is included). It does |
not include times when an address space is idle, waiting for I/O (if WLM- |
managed I/O is not included), enqueued for a resource, etc. |

The Workload Manager periodically computes the execution velocity of all |6

address spaces that have an execution velocity goal. |

The Workload Manager periodically assesses the performance of each
service class, comparing the performance achieved by the service class
against the performance goals specified for the service class. This
assessment is referred to as the "policy adjustment" interval, in that the
Workload Manager decides whether to adjust resource policies based on
whether service classes are meeting performance goals.

The actual comparison process is accomplished by computing a
Performance Index for each service class . For execution velocity goals, |7

the performance index is computed by dividing the goal by the achieved
velocity. If achieved velocity is greater than the goal, the performance index
will be less than one. If achieved velocity is less than the goal, the
performance index will be greater than one.

• For example, suppose that an execution goal of 30% had been specified.
Further suppose that the execution velocity achieved was 50%. Dividing
the goal by the achieved would yield a performance index of 0.6
(30%/50%=0.6).

• However, suppose that the execution velocity achieved was only 15%.
Dividing the goal by the achieved would yield a performance index of 2.0
(30%/15%=2.0).

 A discretionary goal has an implied performance index of 81%, which means that service classes with discretionary goals will8

always be considered as achieving their service goal.

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.7

As can be seen by the above discussion, a performance index less than
one implies that a performance goal has been met, while a performance
index greater than one implies that a goal has not been. Thus, the
performance index can be used to compare the performance of service
classes, regardless of the type of performance goal specified for the service
class . |8

For service classes that have an execution velocity goal, the Workload |
Manager determines whether the execution velocity is less than the
performance goal. If the execution velocity is less than the performance
goal, the system is not meeting performance goals for the service class
period. If the importance of the service class is sufficiently high, the
Workload Manager may re-allocate system resources in an attempt to meet
performance goals.

At a different period (typically every 15 minutes), the SRM provides RMF
with measurement data, including the CPU Using, CPU Delay, and Storage
Delay samples for each service class period. This information is collected
by RMF and written to the SMF data set as Type 72 records. The interval
in which RMF collects data and writes records typically is referred to as the
RMF measurement interval.

CPExpert analyzes the SMF Type 72 records to determine whether service
class periods met their performance goals during each RMF measurement
interval. For service class periods that have an execution velocity |
performance goal specified, CPExpert accomplishes this simply by dividing
the CPU Using samples (R723CCUS) by the total Using and Delay samples
(R723CCUS + R723CTOT). The result is the average execution velocity
over the entire RMF measurement interval.

CPExpert compares the average execution velocity over the entire RMF
measurement interval against the performance goal specified for the service
class period. If the average execution velocity is less than the performance
goal, CPExpert can conclude that the service class period did not achieve
its performance goal for the RMF measurement interval. This conclusion
reveals a persistent problem.

It is important to appreciate that the execution velocity goal may not be met
during a number of Workload Manager policy adjustment intervals. This
circumstance may not be detected when CPExpert analyzes RMF data as
described above, since the average execution velocity is computed by
CPExpert is based on an entire RMF measurement interval. CPExpert will
detect a persistent problem, but cannot detect periodic problems with
execution velocities being less than the performance goal.

 Please see Section 4 (Chapter 3.3) for a description of these delays.9

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.8

CPExpert produces Rule WLM103 when CPExpert detects that a service
class period did not meet its execution velocity goal for an entire RMF
measurement interval. CPExpert reports the percent CPU Using samples,
percent total waiting samples, the resulting execution velocity, and the
primary and secondary causes of delay. Additionally, CPExpert computes
the contribution that the primary and secondary causes of delay made to
the address space delay.

CPExpert analyzes the following possible delays to service classes with an
execution velocity goal : |9

• Denied CPU delay

• CPU Capping delay

• Swap-in delay

• MPL delay

• Page-in delay

• I/O delay

• Queue delay (Batch job initiator delay, TSO LOGON delay, or APPC
request queue delay)

The above causes of delay are analyzed by CPExpert in other rules.

For the purposes of identifying primary and secondary causes of response
delay, CPExpert combines all auxiliary storage page-in delays into "page-in
delay" to reflect the impact of auxiliary storage on response.

Notice that "CPU Using" is not included in the delays analyzed by
CPExpert, as "CPU Using" is the objective of an execution velocity goal.
Additionally, "Unknown" delay is not included in the delays analyzed by
CPExpert, as "Unknown" delay is not included in the computation of
execution velocity.

Each of the above causes of delay are analyzed by CPExpert in other rules.

The following example illustrates the output from Rule WLM103:

Percent CPU Delay '
R723CCDE
R723CTOT

This specific example illustrates a more significant problem; namely, the Sysplex Performance Index is much less than10

1 (indicating that, on a sysplex basis, the service class is exceeding its goal). As a consequence, the WLM might not take action to
improve the performance of the service class period on the local system. This situation is discussed in Rule WLM140. |

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.9

RULE WLM103: SERVICE CLASS DID NOT ACHIEVE VELOCITY GOAL

 VEL40 (Period 1): Service class did not achieve its velocity goal
 during the measurement intervals shown below. The velocity goal was
 40% execution velocity, with an importance level of 2. The '% USING'
 and '%TOTAL DELAY' percentages are computed as a function of the average
 address space EXECUTING time (to exclude activity and delays not under
 WLM control). The 'PRIMARY,SECONDARY CAUSES OF DELAY' are computed as
 a function of the execution delay samples on the local system.

 ------LOCAL SYSTEM--------
 % % TOTAL EXEC PERF PLEX PRIMARY,SECOND
 MEASUREMENT INTERVAL USING DELAY VELOC INDX PI CAUSES OF DELAY
 10:00-10:15,19AUG2003 9.1 16.9 35% 1.15 0.71 DENIED CPU(85%)
 10:15-10:30,19AUG2003 9.2 20.6 31% 1.30 0.72 DENIED CPU(69%)
 10:30-10:45,19AUG2003 8.1 17.4 32% 1.26 0.71 DENIED CPU(68%)
 10:45-11:00,19AUG2003 7.5 13.6 36% 1.13 0.68 DENIED CPU(64%)

|
Note that the % USING and %TOTAL DELAY percentages are computed as |
a function of the average address EXECUTING time. In the above example, |
the data shown for 10:00 indicates that the VEL40 service class was delayed |
for 16.9% of the time that it was executing on the local system. This view is |
of the time when the service class was under control of the WLM (that is, the |
percent excludes such things as IDLE samples and UNKNOWN samples, |
over which the WLM has no control). |

|
While the service class was delayed (the 16.9% shown above), 85% of the |
16.9% delay was due to being denied access to CPU. The 85% CPU delay |
was calculated as: |

|
|
|
|
|

Where |
R723CCDE= CPU delay sample count |
R723CTOT = Total general execution delay samples |

|
These two views are important, because many analysts want to know how |
much WLM "manageable" delay occurred to transactions in some online |10

application (such as TSO) while transactions were being processed. |
|

If IDLE and other delays not under WLM control were included in the "Total |
Delay", a very small number might be shown for the delay. This would be |
due to the fact that IDLE and other delays often account for a large percent |
of TSO time (for example). A small delay that included Idle time would be |

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM103.10

of little comfort to the user who might have experienced large delays waiting |
for transaction completion. |

|
Notice that there is no "SECONDARY" cause of delay shown in the |
example output from Rule WLM103. CPExpert lists a SECONDARY cause |
of delay only if the delay is greater than the WLMSIG guidance variable.

Suggestion: There are no suggestions with this finding. CPExpert will continue analysis |
and other rules will be produced to provide more information. |

|

